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Abstract

In order to attenuate structural waves in beams, a damped mass–spring absorber system is considered that is attached

continuously along the beam length. Compared with other measures, such as impedance changes or tuned neutralisers

applied at a single point, it is effective for excitation at any location along the beam. Although it is a tuned system, it can also

be designed to be effective over a broad frequency range by the use of a high damping loss factor and multiple tuning

frequencies. It has the advantage over constrained layer damping treatments that it can be effective even when the structural

wavelength is long. The parameters controlling its behaviour are investigated and simple formulae developed, allowing

optimisation of its performance. The effective frequency bandwidth increases as the mass ratio of the absorber and the beam

is increased and, for moderate-to-high damping, it also increases as the damping loss factor is increased. The maximum decay

rate is independent of mass and damping for light damping, but for higher damping it reduces as loss factor increases and

increases as the mass ratio increase. A particular application is the reduction of noise from a railway track, which requires the

attenuation of structural waves along the rail to be increased over a frequency band of two or more octaves.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Structural wave propagation in beam structures can lead to unwanted noise transmission and radiation
[1,2]. The particular application providing the motivation for the present work is a railway track [3,4] but
many other examples exist, such as piping systems for fluids or gases, or beam-like components which are
present in structures such as bridges, cranes and buildings. Such beam systems are often very long and may be
characterised in the audio frequency range in terms of propagating waves rather than modal behaviour.
Whereas geometrical attenuation plays a significant role in two- and three-dimensional structures, in a one-
dimensional structure there is no attenuation with distance apart from the effect of damping or discontinuities.
Thus, in lightly damped uniform beams, structural waves may propagate over large distances and noise may
be transmitted far from its source, to be radiated as sound by the beam itself or by some receiver structure. To
reduce the total noise radiated by a vibrating beam, the spatial attenuation must be increased.

The use of a damped mass–spring tuned ‘absorber’ system applied continuously on a beam is studied here.
The purpose of introducing such a system is to attenuate structural waves over a broad frequency range, and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area of beam
E Young’s modulus
I second moment of area of beam
k wavenumber in the beam (real part)
k0 wavenumber of the unsupported beam at

o0

ka wavenumber of the unsupported beam at
oa

kb bending wavenumber in the unsupported
beam

m0a mass per unit length of absorber
m0b mass per unit length of beam
m0s mass per unit length of intermediate mass

in two layer support
s stiffness of foundation per unit length
s1 stiffness of upper foundation layer per

unit length
s2 stiffness of lower foundation layer per

unit length
sa stiffness of absorber per unit length
S surface area of beam
v vibration velocity of beam
w bending displacement of beam

x distance along beam
b wavenumber in the beam (negative ima-

ginary part)
do frequency bandwidth of absorber
D decay rate of wave in beam (dB/m)
e increment of frequency
Z damping loss factor of foundation
Z1 damping loss factor of upper foundation

layer
Z2 damping loss factor of lower foundation

layer
Za damping loss factor of absorber
Zb damping loss factor of beam
Zb,eq equivalent damping loss factor of beam

due to absorber
k ratio of stiffnesses s1/s2
m ratio of absorber mass to beam mass
o angular frequency
o0 cut-off frequency of beam on elastic

foundation
oa tuning frequency of absorber
ob mid-frequency of absorber stop band
oc upper frequency of absorber stop band
z damping ratio
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for arbitrarily located excitation. In a specific application of such a system to a railway track, the radiated
noise from the track has been reduced by around 6 dB by sufficiently increasing the attenuation of vibration
along the rail in a broad frequency band [5,6]. This is achieved by embedding steel masses in an elastomer with
a high damping loss factor and attaching this to the rail continuously along its length or in the form of discrete
blocks between each sleeper. Other forms of rail absorber have also been developed [6].

The focus in this paper is on determining the effects of the various parameters controlling the behaviour of a
generic continuous vibration absorber attached to a beam and deriving simple formulae for this behaviour.
After a discussion of the background to the problem and relevant literature, a simple model of a beam on an
elastic foundation is first considered. The decay rates of waves in the beam and the effects of the support are
illustrated. Using this as a basis, the analysis is extended to an unsupported beam to which a continuous tuned
absorber is attached, the absorber being treated as a frequency-dependent complex support stiffness.
Approximate formulae are then derived for the effects of the absorber, illustrating simply the influence of mass
and damping. The use of multiple tuning frequencies is also considered in order to widen the bandwidth of the
absorber. It is then shown that the damping effect of a vibration absorber system attached to a supported
beam can be approximated by adding the separate spatial attenuations from the supported beam and the beam
with the absorber system. Finally, a system in which the absorber is contained within the foundation is
considered.

2. Background and literature review

2.1. Techniques for reduction of vibration in beams

Various vibration control techniques may be used in order to reduce wave propagation in beams [7].
Impedance changes at discontinuities, for example by added stiffness, mass, resilient connections or section
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changes, may be used to introduce reflection and thereby reduce transmitted power [2,7]. In practice, such
discontinuities cannot always be used, however. In particular for a railway track, continuous welded rail is
used to avoid impact noise due to discontinuities in the rail running surface and it is therefore undesirable to
reintroduce discontinuities. Tapered terminations with added damping can also be used to reduce reflections
from plate or beam edges, for example [8], but are not applicable to the infinite beam of constant cross-section
considered here.

To increase the damping, constrained layer or unconstrained layer damping treatments are particularly
effective for relatively thin plate systems [7,9], but beams are often stiffer in order to carry structural loads.
Consequently, the structural wavelengths are long and surface strains are small so that, to be effective, the
corresponding damping treatments would become impractically large. A tuned absorber system responds to
surface motion rather than strain and can therefore be arranged to be efficient at low frequencies [10].

2.2. Vibration absorbers

Mass–spring or mass–spring–damper systems are widely used to control the response of resonant structures
[7,9,11,12]. These are variously called tuned vibration absorbers, dynamic vibration absorbers, tuned mass
dampers or vibration neutralisers. The design of the system differs depending on whether the purpose is to
suppress the response at a troublesome resonance frequency due to a broad-band excitation or to suppress the
response at a troublesome forcing frequency. Following Ref. [11] they may be called dynamic absorbers in the
former case and vibration neutralisers in the latter case.

The performance in both situations increases as the added mass is increased. However, the need for
damping in the added system depends on the application. When applied to deal with a resonance there is an
optimum value of the damping; if it is too high the response is not modified at the original resonance, but if it
is too low the response at modified resonances of the coupled system will remain a problem. In practice,
relatively high values of damping loss factor are usually required for effective results [11]. On the other hand,
to tackle a troublesome forcing frequency, the damping should be low to obtain good performance at the
intended frequency. The low damping means that the bandwidth of operation becomes small. Therefore, in
order to cover a broader frequency range, for example to allow for variations in the forcing frequency, either
the damping has to be compromised or an adaptive system may be used [13]. Note that the term ‘absorber’ will
be used throughout the remainder of this paper, even when discussing undamped cases, as the practical
applications envisaged have broad-band excitation and will generally require high damping.

The theory of the dynamic vibration absorber was first presented by Ormondroyd and Den Hartog [14].
Since then, dynamic absorbers have been applied in a wide variety of situations. Many examples of
applications and various practical designs are discussed by Hunt [12].

At its resonance frequency an undamped mass–spring system pins the host structure; it should therefore be
tuned to the resonance of the original structure. However, to give the best effect over a frequency band under
random excitation, Den Hartog [15] derived optimum values for the frequency of a damped absorber and its
damping ratio in order to minimise the displacement response of the host structure. The absorber frequency
should be tuned to o ¼ om/(1+m), where om is the natural frequency of the original resonance to be damped
and m is the ratio of absorber mass to the (modal) mass of the host structure. The optimum damping ratio is
found to be z ¼ (3m/(8(1+m)3))1/2 (a list of symbols is given in Nomenclature).

Vibration absorbers are generally intended to deal with a single resonance of the host structure and they
therefore have only a small effect at other structural resonances that lie far from the tuning frequency [7]. It is
possible to add multiple absorbers on a structure, tuned to deal with different resonances. For example, Rana
and Soong [16] considered applying three absorbers to a three-degree-of-freedom building model to reduce the
response to earthquake excitation, but they found that the addition of absorbers intended to deal with the
second and third modes led to a slight increase in the response at the first mode due to the additional mass.

A recent high-profile vibration problem was the excessive lateral sway motion caused by crowds walking
across the Millennium footbridge in London in June 2000 [17,18]. In an extensive review of this field,
dynamic vibration absorbers were identified as a common solution for both lateral and vertical motion of
footbridges [19]. Other solutions include viscous dampers and the tuning of natural frequencies to avoid the
main frequency region of excitation due to pedestrian-induced forces. The Millennium Bridge was
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subsequently modified to increase its damping substantially by a combination of viscous dampers and
vibration absorbers [17,19].

2.3. Application to waves in beams

Although most applications of dynamic absorber systems have been to resonant finite systems, lightly
damped tuned neutralisers have also been considered for application at a point on a long beam to form an
impedance change tuned to a particular forcing frequency [20,21]. Due to the influence of near-field waves in
the beam, the maximum blocking effect occurs at a frequency just above the tuning frequency of the
mass–spring system if the system is arranged to apply a point force. At the tuning frequency itself only half of
the incident energy in a bending wave is reflected, since the neutraliser effectively pins the beam. In Ref. [20]
the bandwidth of such a neutraliser, defined there as the frequency range over which the attenuation is greater
than 3 dB, is found to be equal to oamk/4, where oa is the tuning frequency (the natural frequency of the
grounded mass–spring system), k is the bending wavenumber in the beam and m is the ratio of the mass of the
neutraliser to the mass per unit length of the beam.

Such a mass–spring system applied at a single point is not suitable for attenuating structural wave
propagation in a beam over a wide frequency range. Moreover, if the excitation can, in principle, be at any
location along the beam, as is the case for a railway track, it is clear that some form of distributed treatment
is required.

2.4. Distributed vibration absorbers

Applications of vibration absorbers distributed across a structure are much less common than those applied
at a point intended to deal with particular modes of the structure. Kashina and Tyutekin [22] describe the
use of a set of undamped resonators to reduce longitudinal or flexural waves in beams or plates. They
envisage a group of mass–spring systems located over a certain length of the beam or plate and derive relations
for the optimum mass and number of oscillators required to give a certain attenuation over a specified
frequency band.

Smith et al. [23] give an analysis of a beam or plate with a continuous layer of absorbers applied to it. Their
interest was in ship hulls. It was recognised that there is potential to use the mass of installed machinery in the
ship as a distributed absorber with a high mass ratio. Analysis of an undamped absorber showed that waves in
the beam (or plate) have a wavenumber with an imaginary part (i.e. strong decay) in the frequency range
1oo/oao(1+m)1/2 where oa is the absorber tuning frequency and m is the ratio of absorber mass to beam
mass [23]. It was recognised that adding damping to an array of dynamic absorbers on a plate or beam will
reduce the wave attenuation at its peak value but spread the effect over a wider bandwidth. Numerical results
were presented which showed this, but no analysis was given of the bandwidth or attenuation in the damped
case. Experiments were presented on an aluminium beam, which confirmed the predictions. It was also
demonstrated experimentally that there is additional benefit if the absorber mass is distributed between two
different tuning frequencies.

This work does not appear to have led to the development of distributed vibration absorbers for attenuating
structural waves. Strasberg and Feit [24] present a derivation of the damping effect of a set of small oscillators
attached to a large main structure, representing attached substructures. They show that the damping effect is
primarily determined by the attached mass and not the damping of the attached systems. Other papers
discussing distributed absorbers are generally concerned with the control of modes of vibration [10] or the
control of acoustic transmission, for example in aerospace structures [25–27].

3. Beam on elastic foundation

3.1. Undamped case

Before studying a continuous vibration absorber attached to a beam, it is helpful to review the results for a
beam on an elastic foundation. Throughout, for clarity, the analysis is restricted to an Euler–Bernoulli beam,
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although it could readily be extended to a Timoshenko beam. Consider a uniform beam with bending stiffness
EI and mass per unit length mb

0 on an elastic foundation of stiffness per unit length s, as shown in Fig. 1.
Initially damping is omitted. Considering harmonic motion at frequency o, the free vibration satisfies [1]

EI
d4w

dx4
þ ðs�m0bo2Þw ¼ 0, (1)

where w is the complex vibration amplitude and x is the coordinate along the beam direction. Seeking free
wave solutions of the form e�i

~kx, the wavenumber in the supported beam, ~k ¼ k � ib, which may in principle
be complex, has solutions

~k
2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0bo2 � s

EI

r
¼ �k2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
0

o2

r
, (2)

where o0 ¼ (s/mb
0)1/2 is the resonance frequency of the beam mass on the support stiffness and kb ¼

(o2mb
0/EI)1/4 is the wavenumber of free waves in the unsupported beam. In the absence of damping, the

wavenumber ~k has purely real and imaginary solutions for frequencies above o0. These wavenumbers are
always smaller in magnitude than the corresponding ones for the unsupported beam, kb, but tend towards kb

at high frequency. At o ¼ o0, ~k ¼ 0 and the wavelength of free wave propagation becomes infinite, meaning
that the whole beam moves in phase along its length. This is referred to as the cut-off frequency for free waves
in the supported beam (or sometimes ‘cut-on’ frequency).

For frequencies below o0, free wave propagation cannot occur. Instead, all waves have a wavenumber ~k
with a non-zero imaginary part b that is equal in magnitude to the real part, and waves occur in complex
conjugate pairs. These waves are attenuated rapidly along the beam length. For o5o0, the wavenumber in the
fourth quadrant of the complex plane satisfies

k ¼ b �
k0ffiffiffi
2
p , (3)

where k0 ¼ (s/EI)1/4 is the wavenumber of the unsupported beam at frequency o0.
The attenuation of a wave along the beam is determined by the imaginary part b and is zero for the pro-

pagating waves above o0 in the absence of damping. For a complex wavenumber ~k ¼ k � ib, the amplitude
reduces over a distance of 1m by a factor exp(–b). The decay rate D may be expressed in dB/m and is given by

D ¼ 20 log10ðexpðbÞÞ ¼ 8:686b. (4)

The rate of attenuation of vibration along the beam is important for the noise radiated. The total sound
power radiated by a damped propagating wave in an infinite beam is inversely proportional to b and hence to
the decay rate, D.

3.2. Effect of damping

Introducing damping into the support by means of a complex stiffness, s-s(1+iZ) and similarly for the
beam EI-EI(1+iZb), gives complex wavenumbers

~k ¼ kbð1þ iZbÞ
�1=4 1�

o0

o

� �2
ð1þ iZÞ

� �1=4

. (5)

Three particular cases can be considered:
Fig. 1. Beam on elastic foundation.
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(i)
Fig. 2

(b) im
At high frequency, for obo0, the real part, kEkb. The imaginary part is given by

b � kb

Zb

4
þ

Z
4

o0

o

� �2� �
. (6)
(ii)
 At the cut-off frequency, o ¼ o0, support damping dominates and k � ð�iZs=EIÞ1=4. The root with the
smallest imaginary part (and hence the lowest attenuation) is ~k ¼ e�ip=8ðZs=EIÞ1=4. This gives,
k ¼ 0:924 Z1=4k0, b ¼ 0:383 Z1=4k0.
(iii)
 For o5o0, the attenuation is large. The addition of damping has negligible effect and the wavenumber is
given approximately by Eq. (3).
Fig. 2 shows the wavenumber and wave decay rate in non-dimensional form for various values of
damping loss factor. The frequency is shown relative to the cut-off frequency o0 whilst the real and imaginary
parts of the wavenumber are non-dimensionalised by dividing by k0, the wavenumber in the unsupported
beam at o0.

The real part of the wavenumber is affected by damping only in the vicinity of o0, where increasing the
support damping Z leads to an increase in the magnitude at the minimum. Results for different values of beam
damping loss factor, Zb, are indistinguishable and therefore not shown. Both real and imaginary parts of ~k=k0

tend to 1=
ffiffiffi
2
p

at low frequency, see Eq. (3). At high frequency the real part, k tends to kb which is proportional
to o1/2. The high-frequency behaviour of b can be seen to follow Eq. (6), with a slope of o�3/2 in the absence of
beam damping or o1/2 where beam damping dominates. Extrapolating this high-frequency behaviour back to
o ¼ o0 gives b/k0-Z/4 or Zb/4, respectively. It can be seen that adding damping to the beam is effective over a
much wider frequency range than adding damping to the support.

For a railway track, o0 is typically equivalent to frequencies in the range 200–800Hz, depending on the rail
support stiffness. Above this frequency free wave propagation occurs and significant sound radiation occurs
[30]. Decay rates are typically about 10 dB/m at low frequency, falling to around 1 dB/m above the cut-off
frequency. The rail damper described in Ref. [5] is designed to increase this decay rate in the frequency region
where the rail is the dominant source of noise, which is typically a band of at least two octaves wide above the
cut-off frequency.
4. Beam with attached continuous vibration absorber

Next, a beam is considered to which a continuous mass–spring system is attached, as shown in Fig. 3. The
beam is considered without any support stiffness in order to separate the effects of the absorber more readily;
10 10
0

10
1

10

10
0

10
1

k
/k

0

10 10
0

10
1

10

10

10

10

10
0

ω /ω
0

ω /ω
0

β/
k

0

. Wavenumbers of a beam on an elastic foundation: (a) real part for Zb ¼ 0: —, Z ¼ 0.01; – – –, Z ¼ 0.1, � � � � � � , unsupported beam;
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the combined effect will be considered in Section 7 below. The bending stiffness of the absorber mass is
ignored as this will usually be much more flexible than the beam itself.

4.1. Frequency-dependent stiffness

The absorber is assumed to have mass per unit length ma
0 and stiffness per unit length sa. These

are related by the ‘tuning frequency’ of the absorber, oa ¼ (sa/ma
0)1/2 which is the resonance frequency

of the mass–spring system when attached to a rigid foundation. Hysteretic damping is added to
the springs using a loss factor Za. The analysis of Section 3 can be used directly by replacing s

by a frequency-dependent ‘support stiffness’, s(o) describing the attached mass–spring system, which
is given by

sðoÞ ¼
o2sað1þ iZaÞ

o2 � o2
að1þ iZaÞ

. (7)

At high frequency, oboa, s(o) can be approximated by the damped absorber stiffness,

sðoÞ ! sað1þ iZaÞ for oboa (8)

and the beam can be expected to have similar behaviour to that described in Section 3. At oa, the denominator
of Eq. (7) is zero for an undamped system, giving s(o)-N. For a damped system this becomes

sðoÞ � sa

i

Za

� 1

� �
for o � oa. (9)

The imaginary part of s(o) is thus large in the vicinity of oa. Below oa, the real part of s(o) is negative
(mass-like), and at low frequencies it is determined by the absorber mass, which becomes effectively rigidly
connected to the beam. However, s(o) also has a small imaginary part in this region which will prove to be
important, so that it is useful to retain the second-order terms to give

sðoÞ � �o2m0a 1þ
o2

o2
að1þ iZaÞ

� �
for o5oa (10)

The wavenumber in the beam in the presence of the mass–spring system is found using Eq. (7) as

~k
4
¼ k4

b 1þ m
1þ iZa

1þ iZa � ðo2=o2
aÞ

� �
, (11)

where m is the ratio of the absorber mass to the beam mass, ma
0/mb

0.

4.2. Undamped absorber

Considering first an undamped vibration absorber, Za ¼ 0, below oa the wavenumber will be increased by
the presence of the absorber, as s(o) is mass-like. At low frequencies the effective mass of the beam becomes
mb
0+ma

0 but as the frequency approaches oa the effective mass becomes large and the wavenumber increases
towards infinity. Above the tuning frequency, s(o) is stiffness-like, initially with a very large stiffness.

Therefore a blocked region can be expected, where ~k
2
is imaginary, in the same way as for the beam on elastic

foundation below its cut-off frequency.
Fig. 3. Beam connected to continuous mass–spring system.
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For the undamped absorber, this blocked region will extend from oa to the cut-off frequency of free waves
in the beam, oc, which is given by setting ~k ¼ 0. This is satisfied by

oc ¼ oa

ffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
� oa 1þ

m
2

� �
for m51 (12)

as found by Smith et al. [23]. The wavenumbers are shown in Fig. 4 for various mass ratios. These have been
normalised by the free beam wavenumber at oa, denoted ka ¼ (msa/EI)1/4. In the blocked region, between oa

and oc, the wavenumbers are large and in conjugate pairs. For practical parameters, m51 and the undamped
absorber has a fairly narrow blocked region.

In the absence of damping, non-zero spatial attenuation only occurs in the blocked region; elsewhere ~k is
real. At oa the decay rates tend to infinity, while at oc they tend to 0, as seen in Fig. 4(b). Between these
extremes the mass ratio affects the width of the blocked region but not the magnitude of the decay rates within
this region.

This can also be shown analytically by considering the frequency ob given by o2
b ¼ o2

að1þ m=2Þ at the centre
of the blocked region. For the undamped case Eq. (7) gives

sðobÞ ¼ 2o2
bm0b. (13)

Hence, the wavenumber at ob is given by

~k ¼ kbð�1Þ
1=4
¼ kb

1� iffiffiffi
2
p , (14)

which is independent of m for m51. It increases slightly if m is large, as kb will be slightly higher at ob than
at oa.

4.3. Damped absorber

By adding damping to the mass–spring system, the frequency range in which beam vibration is attenuated
can be increased. Results obtained for different damping loss factors are shown in Fig. 5 for an absorber mass
of m ¼ 0.2 and 0.5. The imaginary part of the wavenumber is again shown normalised by the free beam
wavenumber at oa.

Clearly, as the damping is increased, particularly for large values, the decay rate at the peak is reduced
whilst the height of the flanks is increased. Comparing the two figures, it can be seen that, as the mass ratio is
increased, the blocked region becomes wider, as was seen in Fig. 4 for the undamped case, while the decay rate
at the flanks is increased. In practical applications the mass should be as large as possible within practical
constraints. The rail damper described in Ref. [5] had a total mass ratio of about 0.25. The optimal value of
damping loss factor depends on the shape of the excitation spectrum and therefore cannot be generalised.
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5. Approximate formulae

5.1. Approximate formulae for the decay rate far from the tuning frequency

The effects shown in Fig. 5 can be demonstrated analytically. First the decay rate far from the tuning
frequency is considered. From Eq. (2) the imaginary part of the wavenumber is

b ¼ �kb Im 1�
sðoÞ

m0ro2

� �1=4
( )

. (15)

At high frequencies, from Eq. (8) and substituting sa ¼ ma
0oa

2,

b �
kb

4

o2
a

o2
mZa for oboa: (16)

Similarly at low frequencies, for small values of m and Za it is found that

b �
kb

4

o2

o2
a

mZa for o5oa. (17)

Comparing Eq. (16) and (17), these both increase directly in proportion to the mass ratio m and the damping
loss factor Za, as seen in Fig. 5.

The frequency dependence is complicated by the presence of kb which is proportional to o1/2 so that below
the tuning frequency b is proportional to o5/2 while at high frequency it decreases with o�3/2. It is possible to
simplify the interpretation by considering an equivalent loss factor of the beam, which will be defined by
(compare Eq. (6))

Zb;eq ¼
4b
kb

. (18)

Thus,

Zb;eq �
o2

o2
a

mZa for o5oa, (19)

Zb;eq �
o2

a

o2
mZa for oboa. (20)

These results only apply at very low levels of decay rate and cannot be used to determine a useful frequency
‘bandwidth’ of the absorber effect. From Fig. 5 it can be seen that the straight parts of the graphs only occur
well below oa/2 and above 2oa. The curved flanks will be considered further in Section 5.3 below.
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5.2. Approximate formulae for the decay rate in the blocked zone

In this section the decay rate at the peak will be determined. In order to estimate this, it is
convenient to consider the frequency ob given in Section 4.2 above, which is at the centre of the blocked
zone for the undamped case. Evaluating the imaginary part of the wavenumber at this frequency from
Eq. (15),

b ¼ �kbIm 1�
mð1þ iZaÞ

m=2� iZa

� �1=4
( )

for o ¼ ob. (21)

Two extreme cases can be considered. Firstly, for small damping Za5m/2 (and Z51):

b � �kbIm �1� 2iZa � 2i
Za

m

� �1=4
( )

. (22)

Here the imaginary terms inside the brackets are small compared with �1, so that the decay rate is given by
the earlier result for the undamped case, see Eq. (14), which is independent of both the mass ratio and the loss
factor. The ‘equivalent loss factor’ of the beam is Zb;eq � 2

ffiffiffi
2
p
¼ 2:83.

Secondly, for large damping Zabm/2 (and m52), Eq. (21) reduces to

b ¼
kb

4

m
Za

(23)

This increases as the mass ratio increases but reduces as the damping of the absorber increases. The
equivalent loss factor of the beam is

Zb;eq ¼
m
Za

. (24)

Reference to Fig. 5 confirms that the damping effect in the blocked region is independent of Za at low values
and then reduces as Za increases according to Eq. (23). Moreover, for high values of Za, the height in the
blocked region is increased as m increases.

5.3. Bandwidth of absorber

In order to determine the bandwidth of the absorber, that is, the frequency bandwidth for which the decay
rate (or equivalent loss factor) is above a certain value, consider frequencies in the vicinity of oa and write
o ¼ oa(1+e). Then provided that |e|51, from Eq. (11)

Zb;eq

4
¼

b
kb

� �Im 1þ m
ð1þ iZaÞ

iZa � 2�

� �1=4
( )

. (25)

Expanding

Zb;eq

4
� �Im

1þ 2�=Za

� �2
þ m� ð2�m

	
Z2aÞ � ðim=ZaÞ 1þ 2�ð Þ

1þ 2�=Za

� �2
 !1=4

8<
:

9=
;. (26)

Provided that Zb,eq54, the imaginary part of the expression inside the round brackets will be small
compared with the real part, allowing it to be expressed as

Zb;eq �
1þ 2�=Za

� �2
þ m� ð2�m

	
Z2aÞ

1þ 2�=Za

� �2
 !1=4

ðm=ZaÞð1þ 2�Þ

1þ 2�=Za

� �2
þ m� ð2�m

	
Z2aÞ

 !

¼
Reð ~kÞ

kb

ðm=ZaÞð1þ 2�Þ

1þ 2�=Za

� �2
þ m� ð2�m

	
Z2aÞ

 !
. ð27Þ
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For |e|51, Re( ~k)EkbEka. The remaining expression can be solved for e:

Zb;eq 1þ
2�

Za

� �2

þ m�
2�m
Z2a

 !
�

m
Za

ð1þ 2�Þ. (28)

This has two roots e+ and e� which are above and below zero (either side of oa) so that the bandwidth do
within which Zb,eq is greater than a certain value is given by

do
oa

¼ �þ � �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2

1þ
Za

Zb;eq

 ! !2

þ
Zam
Zb;eq

� Z2að1þ mÞ

vuut . (29)

For the limiting case of low damping, Za-0, this reduces to m/2, in agreement with Eq. (12). When Za is not
small and m51, the bandwidth in Eq. (29) can be approximated by

do
oa

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zam
Zb;eq

� Z2a

r
. (30)

Fig. 6 shows the actual bandwidth obtained for m ¼ 0.2 at various levels of damping, determined
numerically from results such as those in Fig. 5. Each plot shows the bandwidth at a particular value of
equivalent loss factor. Also shown are the estimates obtained from Eq. (29). These can be seen to agree
very well with the observed bandwidths in most cases. Fig. 7 shows corresponding results for m ¼ 0.5.
Agreement is found to be slightly less good for this case, as the approximations made are no longer valid when
e is not small. Also shown in Figs. 6 and 7 are the estimates obtained using the approximate expressions
according to Eqs (12) and (30). It can be seen that these give good agreement at low and high values
of Za, respectively.

The bandwidth according to Eq. (30) is dominated by the first term except for very high values of Za where
the peak of the decay rate curve is approached. From Eq. (24) it will be recalled that for high damping the
peak is characterised by Zb,eq ¼ m/Za, which gives do ¼ 0 in Eq. (30). However, for most of the range of values
considered and where Za40.01, a reasonable estimate is given by

do
oa

�

ffiffiffiffiffiffiffiffiffi
Zam
Zb;eq

r
. (31)

This shows directly the benefit of increasing the absorber damping and mass ratio on the bandwidth,
provided that the absorber loss factor is not increased too far.

It may be noted from these results that the relative bandwidth of the absorber is independent
of the beam wavenumber, see Eq. (29). Thus by selecting an appropriate tuning frequency, such an
absorber can be used to treat any frequency. In particular, it can be effective even at low frequencies
where the wavelength in the beam is too long for constrained layer damping treatments to be used
successfully.

6. Multiple tuning frequencies

It is worthwhile considering the potential benefit of dividing the absorber mass between two or more added
systems tuned to different frequencies such that their bandwidths do not overlap (but are adjacent to each
other). Such an approach has been used for discrete vibration neutralisers [28,29].

For a continuous system, the combined bandwidth of two such absorbers is

do � oa;1

ffiffiffiffiffiffiffiffiffiffiffiffi
m1Za;1

Zb;eq

s
þ oa;2

ffiffiffiffiffiffiffiffiffiffiffiffi
m2Za;2

Zb;eq

s
. (32)

Assuming that the mass is equally divided, m1 ¼ m2 ¼ m/2, and that the loss factors are identical

do �
oa;1 þ oa;2ffiffiffi

2
p

� � ffiffiffiffiffiffiffiffiffi
mZa

Zb;eq

r
. (33)
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This gives a bandwidth that is wider than for a single absorber of the same overall mass by a factor of
approximately O2 provided that the first term in Eq. (30) remains dominant. Similarly, dividing the mass
equally between three absorbers of different frequencies leads to a bandwidth which is O3 wider than the
single absorber, etc. However, as the mass is divided further, the height of each damping peak is reduced so
that it becomes more difficult to obtain high decay rates. Thus there is a trade-off between bandwidth and high
decay rate.

Fig. 8 shows results calculated for single, double and triple absorbers with a loss factor of 0.4 and
the same combined mass of m ¼ 0.2. Also shown is a result for ten absorbers with the same combined
mass. The tuning frequencies have been chosen in each case to ensure that the equivalent loss factor
Zb,eq just remains above 0.1 in a continuous frequency band. Although the bandwidth is clearly
increased, it can be seen that the height of the peaks is reduced. The net effect for a broad-band
excitation can be found by integrating the curves in Fig. 8 over frequency and is only the equivalent
of 1.2 dB greater for ten absorbers than for one, although the actual benefit in practice will depend
on the form of the excitation spectrum. The result for ten absorbers can be seen to be close to a limiting case
such that, if the mass is further subdivided while maintaining the same beam loss factor, no further gain is
obtained.

The peaks can be observed to increase slightly in height with increasing frequency, due to the influence of
kbpo1/2. This suggests that if the target is for a particular value of decay rate, it would be more efficient to
divide the mass unevenly between the various tuning frequencies, with more mass concentrated at the lower
tuning frequencies.
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7. Absorber applied to beam on elastic foundation

If an absorber system is applied to a beam on an elastic foundation, the dynamic behaviour should be
predicted by combining the foundation stiffness and the equivalent stiffness of the absorber in Eq. (7) to give a
total frequency-dependent stiffness s(o). However, since the absorber is designed to increase the attenuation of
propagating waves in the region above the cut-off frequency due to the support, it is reasonable to assume that
o05oa. Where these frequencies are well separated, it is possible to predict the vibration decay rate as the sum
of that of the supported beam with no absorber and of the free beam with absorber. Such an approach has
been used previously in determining the decay rates of a rail absorber [5], in order to simplify the analysis.
In this section, the validity of this approach is investigated.

Including the foundation stiffness s1 into Eq. (7), gives (in the absence of damping)

sðoÞ ¼ s1 þ
o2sa

o2 � o2
a

. (34)

This yields a cut-off frequency, satisfying mr
0o2
�s(o) ¼ 0, which for o5oa gives

o00 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1

m0b þm0a

r
¼

o0ffiffiffiffiffiffiffiffiffiffiffi
1þ m
p . (35)

This is lower than that in the absence of the absorber, due to the addition of the absorber mass. Waves are
blocked below o0

0.
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Including damping in each of the springs and the beam itself, the imaginary part of the wavenumber is given
by a modified form of Eq. (15),

b ¼ �Im kbð1þ iZbÞ
�1=4 1�

o2
0

o2
ð1þ iZÞ �

mð1þ iZaÞ

ðo2=o2
aÞ � ð1þ iZaÞ

� �1=4
( )

. (36)

Around and above oa the final term, related to the absorber, dominates and the decay rate can be estimated
using the relations in Section 4. For oboa,

b � kb

Zb

4
þ

Zo2
0

4o2
þ

Zamo
2
a

4o2

� �
. (37)

The first two terms represent the damping effect of the beam and foundation layer, respectively, given by
Eq. (6) and the third term is that of absorber above its tuning frequency, Eq. (16). This shows that the
damping effects can be simply combined by adding the separate decay rates.

For frequencies well below oa, Eq. (36) may be expressed as

b � �kbð1þ mÞ1=4Im ð1þ iZbÞ
�1=4 1�

o2
0

o2

ð1þ iZÞ
1þ mð Þ

� �1=4
( )

, (38)

which is equivalent to the result in Eq. (6) for a beam of mass mb
0(1+m) on the elastic foundation. Thus the

absorber actually reduces the attenuation in this region, due to the increase in mass and the corresponding
shift in cut-off frequency o0

0.
Fig. 9 shows the normalised decay rate in the form of b/ka for the beam on elastic foundation with absorber,

according to Eq. (36). In Fig. 9(a) the initial cut-off frequency for the beam on elastic foundation o0 is set to
0.3oa and m ¼ 0.2. For simplicity the beam damping loss factor Z is set to zero. In addition, the separate
results are shown for the beam on elastic foundation and the unsupported beam with absorber. As noted
above, the effective cut-off frequency due to the support stiffness is reduced, here by about 9%, and
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consequently the decay rate is reduced slightly in the region between about 0.2oa and 0.5oa (around and
above o0) by the addition of the absorber mass. By adjusting the mass of the beam to include that of the
absorber, a good approximation to the exact result can be obtained using the sum of the two separate results.

In Fig. 9(b) results are shown for a stiffer support, giving o0 ¼ 0.5oa, again with m ¼ 0.2. Here, in the
vicinity of oa, the combined effect is slightly larger than predicted by adding the separate effects. However, the
difference is still less than 1 dB and the approximate approach is acceptable.

8. Two-layer foundation

In this section a beam on a two-layer foundation is considered, as shown in Fig. 10. This can represent, for
example, a railway track consisting of a rail supported on sleepers, with resilient rail pads between the rail and
sleeper and ballast beneath the sleeper providing a further layer of resilience. It has long been recognised that
the sleeper mass forms a dynamic absorber which increases the rail decay rate in a particular frequency band
[30]. The effect of including the absorber mass within the foundation in this way is investigated here. The
stiffness per unit length of the upper spring is denoted s1, the mass per unit length of the intermediate mass is
ms
0 and s2 is the stiffness per unit length of the lower spring.
The analysis of Section 3 can be repeated but with a frequency-dependent support stiffness, s(o), which in

the undamped case is given by

sðoÞ ¼
s1ðs2 � o2m0sÞ

ðs1 þ s2 � o2m0sÞ
. (39)
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Damping can be added as before by making s1 and s2 complex with loss factors Z1 and Z2, respectively. If the
beam is constrained, the mass ms

0 can vibrate freely on the combined stiffness of the two layers at the
frequency oa, given by

oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

m0s

r
. (40)

This corresponds to an anti-resonance of the support as seen at the beam and is the tuning frequency of the
two-layer support at which it acts as a neutraliser to the beam.

There are two frequencies at which mr
0o2
�s(o) ¼ 0, corresponding to the condition of cut-off seen

in Section 3. These are the natural frequencies of the corresponding two-degree-of-freedom system shown in
Fig. 10(b). They can be found as

o2
c ¼
ðo2

1 þ o2
aÞ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2

1 þ o2
aÞ

2

4
� o2

1o
2
2

s
, (41a)

where o1 and o2 are given by

o1 ¼

ffiffiffiffiffiffiffi
s1

m0r

r
; o2 ¼

ffiffiffiffiffiffiffi
s2

m0s

r
. (41b,c)

The two cut-off frequencies oc are plotted in Fig. 11 for different values of m ¼ m0s=m0b and k ¼ s1/s2. These
results have been normalised by the absorber tuning frequency oa from Eq. (40). The absorber bandwidth
[oa, oc2] can be seen to be smaller than the corresponding result from Eq. (12), shown by the circles, which
forms the limit as s2-0.

Examples of the wavenumbers are shown in Fig. 12, normalised to the free beam wavenumber at oa. These
results are given for m ¼ 4, which is typical of a railway track with concrete sleepers [30], although much larger
than considered in earlier sections.

As for the case of a single stiffness support, below the first cut-off frequency oc1, a low frequency ‘blocked’
region occurs where no waves propagate, the wavenumbers having equal real and imaginary parts. Free wave
10 10
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a

Fig. 11. Bounding frequencies of propagating wave behaviour shown relative to ‘absorber tuning frequency’ of two-layer foundation. —,

m ¼ 0.5; – – –, m ¼ 1; � � � � � � , m ¼ 2; – � – � –, m ¼ 4; o, limit for s2 ¼ 0.
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propagation occurs in the whole of the region between oc1 and oa. At oa the support stiffness s(o)
becomes infinite and changes sign and free wave propagation ceases. There follows a second ‘blocked’
region of complex wavenumbers between oa and oc2, in which the wavenumber falls with increasing
frequency, above which free wave propagation again commences. At high frequency the wavenumber tends to
that of the unsupported beam, kb. The region between oa and oc2 resembles closely that of the absorber seen
in Section 4.

As the stiffness of the lower layer (s2) increases, relative to s1, the width of the blocked zone above oa

reduces, making the absorber less effective. Conversely, the blocked region at low frequency extends higher in
frequency.

Also shown in Fig. 12 are results including damping in the support layers. These show similar trends
to the undamped results, with the ‘blocked’ regions still discernible below oc1 and between oa and oc2.
The attenuation (imaginary part) is no longer zero outside these blocked regions. As for the un-
damped case, the effectiveness of the intermediate mass acting as an absorber can be seen to reduce as the
stiffness of the lower layer increases. For smaller values of m, not shown, the bandwidth of the absorber peak is
reduced.

This confirms that the sleeper in a railway track acts like a tuned absorber. Since it has quite large
mass compared with the beam, large attenuation is possible over a wide frequency range. The effective-
ness is reduced, however, as the stiffness of the upper resilient layer is reduced relative to that of the lower
layer.
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9. Conclusions

The use of a continuous, damped mass–spring system added to a beam has been shown to be effective in
increasing the attenuation of propagating structural waves in the beam and hence reducing the radiated noise.
It is effective at any tuning frequency, independent of the bending wavelength in the beam, and so is
particularly useful for stiff beams or at low frequencies, where constrained layer damping would be
impractical. This has been developed for the particular application to a railway track [5] but could also be
considered for piping systems and many other beam-like structures. The practical application considered in [5]
consists of steel masses embedded in an elastomer attached to the rail. Multiple tuning frequencies and a high
damping loss factor are used to give attenuation over a broad frequency range.

Approximate formulae for the effect have been derived. The effective frequency bandwidth increases as the
mass ratio of the absorber to the beam is increased. Although the bandwidth is independent of the absorber
damping loss factor for low damping, for moderate-to-high damping the bandwidth increases as the damping
is increased. The maximum decay rate is independent of mass and damping for light damping, but for higher
damping it reduces as loss factor increases and increases as the mass ratio increases. For a given mass, the
effective bandwidth can also be increased by dividing the mass to form multiple absorbers with different
tuning frequencies, although the height of the decay rate peak is reduced as a result.

For a beam on an elastic foundation, the addition of an absorber can be represented well by adding the
decay rates of the unsupported beam with absorber and the supported beam without absorber but including
the absorber mass.

For a railway track with concrete sleepers, the mass of the sleeper acts as a tuned absorber which increases
the decay rate over a wide frequency region. The large mass relative to the rail makes this an effective system.
However, the fact that the absorber is integral to the support system in this case means that the benefit is less
than that for a separate absorber of the same mass, especially if the rail pad is not much stiffer than the ballast
layer below the sleeper.
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